

Coin Flipping

- Use the random operation to write a program that flips a coin 10 times and shows how many were
heads and how many were tails. Divide one by the other to see how close the ratio is 1. Run the program
several times to see how the ratio changes. What happens to the ratio if you flip 100 times? 1000 times?
- If you like, add graphics to show the result of each coin flip (but you’ll still have to keep the flipping fast
or it will be too boring to wait for the program to flip 100 times).

Two Dice

- Use the random operation to make a program that rolls two dice and adds up the total (a number from 2
to 12). Keep track of how many times you get each number. You can keep track using 11 variables, or
you can use a list (ask for help if you want to know how). Make your program do 10 rolls, then try 100 rolls
and 1000 rolls.
- Make the program draw a bar chart showing how many times each number came up. What patterns do
you see? Can you explain it?
- If you like, add graphics to show the result of each dice roll.

Blackjack

- Use the random operation to make a program that deals two random cards from a deck by picking a
random suit (spades, hearts, diamonds, or clubs) and a random rank (2, 3, 4, 5, 6, 7, 8, 9 10, J, Q, K, or
A). (Can you make sure the two cards aren’t exactly the same?) Check if the total is 21 (ace counts as 11,
and face cards count as 10, so you’d need an ace and a 10/J/Q/K). Have your program deal lots of times
and keep track of how many two-card hands are 21. Make an estimate for the chance of being dealt a 21
with two cards
- If you like, add graphics to show the two cards.

Monty Hall Puzzle

o There are three doors. There is a good prize behind one of them, and bad prizes behind

other two.

o You choose a door (but nobody opens it yet). Then, Monty opens one of the other two

doors and (very important!) he always picks a door that reveals one of the bad prizes – he

never opens the good door.

o Now you have a choice: you can choose to stick with your first choice of door, or you can

switch to the other door (the one of the remaining two that Monty didn’t open). The

question is: Is it better to keep your first choice, switch, or it doesn’t matter?

o Example: Suppose in the picture above you are told there is a car behind one of the three

doors. You guess door #2. Monty says that he’ll open one of the other doors, and the door

he’ll open has a bad prize. He opens door #3 and indeed it has a bad prize (assuming you

don’t want a goat). The question is: Should you change your guess to door #1, or leave it at

door #2, or does it not matter?

o Write a computer simulation to find out!

Random Maze Escape

- Draw a simple maze on the background using a certain color. Make a sprite pick a direction: up,

down, left, or right. The sprite moves 10 pixels at a time in that direction. If it hits a wall, it backs up 10
and chooses another random direction and keeps repeating. Can the sprite get out of your maze?

Balls and Urn

You are given two urns (containers like big vases) and 5 black balls and 5 white balls. Somebody else will

come in and pick one of the urs at random and a ball drawn at random from it. If the ball they pick is

white, you win. If the ball they pick is black, you lose. How would you distribute the balls so as to

maximize the chances of winning?

o Write a program that tries a distribution (e.g., urn1 has 2 black and 3white, urn2 has 2 white

and 3 black) and figures out the probability of the person picking a white by simulating lots

of times. Try various distributions and see which one works best.

Fill Squares

- Make a program that fills a 10x10 grid with colored squares. You can do this using a square sprite
whose color you change randomly (it doesn’t matter what the colors are for this experiment; you can use
all the same color or use different colors to make a nice picture like the one above). Repeatedly pick a
random x value from 0 to 9 and a y random value from 0 to 9 and draw a square at that grid location.
Keep count of how many squares you plot. Watch the program and stop it by pressing a key when all
squares in the grid have been filled. How many tries does it take to fill the screen? Do it lots of times and
see how many tries it takes on average.

Pachinko Machine

Poker Hands

- Make a program that uses random to deal a 5-card poker hand. Check if your hand has at least a pair.
Keep track of how many times you get at least a pair. Give an estimate of the probability of getting dealt
at least a pair.
- You can add other poker hand types and see what the chances of getting those are – see the chart
above.
- If you like, add graphics to show the five cards.

